Cities and climate change

Charlotte Liotta liotta@centre-cired.fr

16 november 2022

Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

2) What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

3 A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Why focus on cities?

• Cities concentrate populations, wealth, activities, and emissions

- Cities as actors of the environmental transition
- Diversity of urban forms

2 What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

55% of the global population (4.3 billion people) live in cities in 2018 (United Nations, 2019)

Figure: United Nations, 2018

Image: Image:

The share of global urban population should reach 68% in 2050 (United Nations, 2019)

Figure: United Nations, 2018

Cities concentrate wealth and economic activities

Figure: Parag Khanna, 2016

Image: A matrix

Urban emissions account for 67-72% of global emissions in 2020 (IPCC AR6 WGIII)

Figure: The highest emitting 100 urban areas account for 18% of the global carbon footprint (Moran et al., 2018)

Total carbon emissions of cities above 0.5 million in 2012

Source: LSE Cities 2014 (based on LSE Cities analysis using data from Oxford Economics)

Image: Image:

э

What about emissions per capita?

- Urban populations are generally richer, and consume more than rural populations.
- But urban density allows to mitigate transportation and buildings emissions (public transports, denser and more isolated buildings,...).

Figure: Participation in private air travel in the UK (Mattioli et al., 2021)

Emissions per capita (IPCC AR6 WG3)

Charlotte Liotta

16 november 2022 10 / 86

Average carbon emissions per capita of cities above 0.5 million by region in 2012

Source: LSE Cities 2014 (based on LSE Cities analysis using data from Oxford Economics)

Image: Image:

- The concentration of populations in cities makes them vulnerable to extreme events (floods, urban heat islands, etc.).
- Güneralp et al (2015): even without accounting for climate change, flood-prone urban areas will increase by a factor of 2.7 between 2000 and 2030, urban areas exposed to drought risk will increase by a factor of two, and urban areas exposed to both risks will increase by a factor of 2.5.

Why focus on cities?

• Cities concentrate populations, wealth, activities, and emissions

• Cities as actors of the environmental transition

• Diversity of urban forms

2) What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Main ideas behind TMNs:

- Shared commitments to climate and sustainability goals, that add up to NDCs.
- Collaborative approach: local experimentation and knowledge sharing.
- Examples of TMNs: C40, ICLEI, 100 Resilient Cities, Global Covenant of Mayors,...

- Mainly megacities (at least 10 million inhabitants).
- Performance-based requirements: member must have a climate action plan consistent with the 1.5°C goal of the Paris Agreement.
- Work areas: sustainable mobility, energy, food, water, and waste management,...
- Emphasis on health issues and equity.

Figure: Villes du C40

Image: A matrix

2

- 2500 cities, towns or regions representing together 25% of the global urban population.
- 5 development pathways:
 - Low emission development pathway;
 - Nature-based development pathway;
 - Circular development pathway;
 - Resilient development pathway;
 - Equitable and people-centered development pathway.

Figure: Members of ICLEI

・ロト ・ 日 ト ・ 目 ト ・

- Pioneered by the Rockefeller foundation.
- Goal: help more cities build resilience to the physical, social, and economic challenges.
- 4 main pathways:
 - Helping cities in establishing a new position in city government, a Chief Resilience Officer;
 - Expert support for the development of a robust Resilience Strategy;
 - Access to solutions, service providers, and partners from the private, public and NGO sectors who can help them develop and implement their Resilience Strategies;
 - Membership of a global network of member cities who can learn from and help each other.

100 Resilient Cities

Figure: Members of the Resilient Cities network

Image: A matrix

Experimentation / knowledge sharing

Summary

Curitiba was the first city to develop Bus Rapid Transit in 1974 and today the city continues to be a transit innovator, having recently isunched a program to implement hybrid and electric buses. Curitiba's BRT system was developed as an integral part of an overall Materplan (1966),¹⁹⁸³ its main objectives included radial expansion of the city along five condrosr, integrating land use and transport, and creating a dedicated planning institute IPPUC.¹⁹⁸⁴ The Masterplan is revised every 10 years, and the latest revision includes a comprehensive urban sustainable development plan for the next 50 years.

In the 1990s, after creating the BRT system thanks to a partnership between the municipality and bus operators (which made the first BRT lanes cost 50 times less than subway^{xxxx}). Curitiba tackided the intergration of all bus lines into the Rede Integrada de Transporte, with a hierarchy of bus service types and common terminals, allowing

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Emissions mitigation goals

Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

2) What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Diversity of urban forms

BARCELONA'S BUILT-UP AREA

20 (km)

5.25 MILLION	POPULATION:	5.33 MILLION
4,280 KM ²	URBAN AREA: TRANSPORT	162 KM ²
7.5	CARBON EMISSIONS: TONNES CO, PER PERSON (PUBLIC + PRIVATE	0.7

TRANSPORT)

POPULATION: URBAN AREA: TRANSPORT CARBON EMISSIONS: TONNES CO, PER PERSON (PUBLIC + PRIVATE TRANSPORT)

Source: Bertraud and Richardson, 2004.11

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Population densities - 3D representations

Figure: Hoornweg et al., 2011

Diversity of 3D urban forms

Figure: Li et al., 2022 CONCERNENCE CENTRE

2

Diversity of development patterns

Figure: Mattha et al., 2022

... and thus diversity of strategies

Figure 4 | Examples of low-carbon infrastructure strategies tailored to different cities. Prioritization according to urban population density and the average GHG intensity of existing electricity supply. EV, electric vehicle; GSHP, ground-source heat pumps; BIPV, building integrated photovoltaics; HRT, heavy rapid transit; IRE, import renewable energy; DE, district energy.

Figure: Kennedy, Ibrahim and Hoornweg, 2014 =

... and thus diversity of strategies

CONTRACTOR AND ADDRESS.

Figure: McKinsey, C40, 2017

э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

... even within cities

Figure: G. Baiocchi et al. (2015)

• = • •

Image: A matrix

э

- High population densities in cities as an opportunity for climate change mitigation.
- Exposure to extreme events makes the implementation of urban adaptation policies necessary.
- The urban scale is a good scale to efficiently implement policies.
- We need to design tailored climate policies for each local context.

1) Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Urban mitigation potential by sector

Figure: Coalition for Urban Transition, 2019

• • • • • • • • • • •

Transport

• Urban transport:

- 3 GtCO2-eq per year, corresponding to 8% of global emissions (Creutzig et al., 2016).
- Transport is one of the fastest-growing sector in terms of emissions (Minx et al., 2021).

Figure: Minx et al. (2015)

э

< ロト < 同ト < ヨト < ヨト

Increasing Motorization

э

Emissions per passenger-km by urban transport mode

Source: LSE Cities 2014 based on STF 2014

Image: A matrix

э
Transport cobenefits in Bangkok

Figure: Ayaragarnchanakul and Creutzig, 2022. Total: 7 - 10.8% of Bangkok's GRP (15 - 22.9 milliards par an).

Charlotte Liotta

Urban transport mitigation policies

э

< ロト < 同ト < ヨト < ヨト

Global adoption of sustainable transport systems

Figure: Source: Hidalgo and Zheng, 2013

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Newman et Kenworthy, 1989

э

< ロト < 同ト < ヨト < ヨト

- GHG emissions from buildings:
 - 21% of global GHG emissions in 2019, splitted between:
 - 57% of indirect emissions from offsite generation of electricity and heat.
 - 24% of direct emissions produced onsite.
 - 18% of embodied emissions from the use of cement and steel.

- GHG emissions from buildings:
 - 21% of global GHG emissions in 2019, splitted between:
 - 57% of indirect emissions from offsite generation of electricity and heat.
 - 24% of direct emissions produced onsite.
 - 18% of embodied emissions from the use of cement and steel.
- Buildings' emissions growth is due to:
 - Population growth.
 - Floor Area per Capita growth.
 - The energy inefficiency of **new buildins** (developping countries) and of **retrofittings** (developped countries).
 - The growing use of domestic equipments, including in particular AC.
 - Fossil fuels dependency, and **slow decarbonation** of the energy supply.

Energy use and urban forms

Figure: Source: WBCSD, 2009

Charlotte Liotta

э

→ < ∃→

-

< 67 ▶

Energy use and urban forms

Figure: Source: LSE Cities and EIFER Research, 2014

< ロト < 同ト < ヨト < ヨト

Efficiency gains are approximately offset by a growth in the per-capita area

Public policy and urban forms

Faire un don au

Reportage – Monde

Contre l'étalement urbain, l'Allemagne commence à interdire les pavillons neufs

Charlotte Liotta

16 november 2022

45 / 86

Low consumption practices

Figure: Levesque, Pietzcker and Luderer, 2019.

Charlotte Liotta

Building sector mitigation potential

* including ICT, water heating, and cooking.

** including the change in construction methods; management and operation of buildings; and efficient heating, ventilation, and air-conditioning

*** typically in new high performance buildings.

**** including thermal efficiency of building envelopes; management and operation of buildings; and efficient heating, ventilation, and air-conditioning.

Figure: IPCC AR6 WG3

< ロト < 同ト < ヨト < ヨト

Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Floods impacts are worsening:

- Increased frequency and intensity of extreme precipitation events due to climate change.
- Urban sprawl in flood-prone area.
- Soil impermeabilization that worsens the consequences of flooding.
 - Case-study on 4 European cities: Soil impermeabilization increases by 1% = floodings increase by more than 10% (Kaspersen et al., 2017).

Urban sprawl and flood risks

Figure: Ford et al., 2019

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Urban sprawl and flood risks

Figure: Ford et al., 2019

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Scenario	Area of development in flood plain	Population density in new development (mean)	Expected annual damages from flooding
Current	8419 ha	93.25 people/ha	£29 million
Baseline	10,131ha	114.50 people/ha	£76 million
Eastern	10,964ha	106.30 people/ha	£118 million
Centralised	9986 ha	123.10 people/ha	£72 million
Suburban	9937 ha	115.30 people/ha	£62 million
	Figu	ure: Ford et al., 2019	

Image: A matrix

3

Informal settlements and flood risks

Figure: Floods in Cape Town. Source: Claus Rabe

Sea-level rise and storm surge in port cities of more than 1 million inhabitants (Hallegatte et al. 2011)

- During the day, a large part of the sun radiation heats the urban materials.
- This stored heat is released at night, limiting the nighttime cooling of the air in cities.
- Also influenced by the heat released by human activities and the air flow from the countryside.

And in the local data and the second second second

- Local scale: buildings influence the wind flow and cast shadows, and often release heat to the atmosphere.
- Neighborhood scale: urban climate sensitive to urban forms, land cover, land use, and the presence of vegetation.

Air temperature in the Toulouse agglomeration, France, July 29, 2019 (6:30 AM local time)

- UHI exposure will increase because of:
 - Climate change ;
 - Population growth in cities already subject to extreme heat events (Africa, India, Middle East).
- Depending on the scenario, between half and two-thirds of the world's population could be exposed to extreme heat events in 2100 (Mora et al., 2017).
- Unequal exposure: the poorest, children, the elderly, and ethnic minorities are likely to be more exposed.

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Water resources:

- 1/3 of the world's cities will exhaust their water resources before 2050 (Flörke et al, 2018).
- 350 million additional urban dwellers will be exposed to droughts under a 1.5°C-warming or 410.7 million under a 2°C-warming (Liu et al., 2018).

Water resources:

- 1/3 of the world's cities will exhaust their water resources before 2050 (Flörke et al, 2018).
- 350 million additional urban dwellers will be exposed to droughts under a 1.5°C-warming or 410.7 million under a 2°C-warming (Liu et al., 2018).

• Air pollution:

- 95% of the world's population lives in areas where PM2.5 concentrations exceed WHO guidelines.
- Air pollution causes 7 million deaths per year (WHO), 90% of which are in developing countries.
- Temporary improvement due to covid.

Water resources:

- 1/3 of the world's cities will exhaust their water resources before 2050 (Flörke et al, 2018).
- 350 million additional urban dwellers will be exposed to droughts under a 1.5°C-warming or 410.7 million under a 2°C-warming (Liu et al., 2018).

• Air pollution:

- 95% of the world's population lives in areas where PM2.5 concentrations exceed WHO guidelines.
- Air pollution causes 7 million deaths per year (WHO), 90% of which are in developing countries.
- Temporary improvement due to covid.

• Wildfires:

• Warmer and drier climates that favor forest fires (e.g. in Australia, the United States, Russia) that can impact cities in these regions.

Nature-based solutions

Benefits from green spaces:

- Temperature regulation.
- Air quality regulation.
- Rainwater regulation.
- Protection against coastal and river flooding.
- Food production and water management.

Nature-based solutions

Benefits from green spaces:

- Temperature regulation.
- Air quality regulation.
- Rainwater regulation.
- Protection against coastal and river flooding.
- Food production and water management.

Wider sustainability cobenefits from green spaces:

- Impacts on obesity
- Impacts on mental health
- Impacts on social connections
- Equity issues:
 - Related to green spaces distribution
 - Green gentrification

Equity and adaptation (IPCC AR6 WG2)

Charlotte Liotta

61 / 86

э

Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Which urban form to reconcile these goals?

• Compact cities:

- Transport:
 - Reduce distances (Avoid)
 - Develop public transport (Shift)
 - Promote active mobilities (Shift)
- Buildings:
 - Decrease area per capita
 - Increase heights
- Floods:
 - Decrease urbanization in flood-prone areas
 - Decrease soil impermeabilisation
- Biodiversity

Which urban form to reconcile these goals?

• Compact cities:

- Transport:
 - Reduce distances (Avoid)
 - Develop public transport (Shift)
 - Promote active mobilities (Shift)
- Buildings:
 - Decrease area per capita
 - Increase heights
- Floods:
 - Decrease urbanization in flood-prone areas
 - Decrease soil impermeabilisation
- Biodiversity

Sprawled cities:

- Urban green spaces: Cooling effect, recreation, flood regulation,...
- Better air quality, less exposure to noise,...
- Urban heat island effect less intense.

A sustainability window of urban form? (Lohrey and Creutzig, 2016)

Different visions: compact cities

Figure: Angel et al. (2020)

э

Different visions: IPCC AR6 WG3

IPCC AR6 WG3:

- Beyond density: Connectivity, accessibility, land-use mix.
- "Compact and walkable" urban forms.

Importance of ensuring access to:

- Social infrastructures:
 - Leisure
 - Education
 - Health and social services
 - Sport and recreation facilities
 - Childcare
- Food
- Public transport
- Public open space

Figure: Source: Giles-Corti et al. (2022)

Figure: Source: Alain Bertaud.

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

15-minute city ?

Charlotte Liotta

3

Star-shaped city

Figure: Pierer and Creutzig (2019)

Current trends (Güneralp et al., 2020)

Figure: Global aggregated decadal trends in urban population density. A: Population > 300 000, B: Population > 2 million, C: Population > 300 000 and < 2 million.

Current trends (Güneralp et al., 2020)

In practice, controlling urban sprawl is very difficult:

- It is a multidimensionnal phenomenon, hard to define and measure.
- The public and scientific debate focuses on big cities and developed countries.
- Social acceptability of anti-sprawl measures.

- We need to deeply rethink the way we build cities:
 - Need for ambitious actions, implemented as fast as possible to avoid carbon lock-in
 - Need for an integrated approach accounting for transportation, housing, land-use, green spaces, adaptation, and equity issues.
 - Urban plans involving a wide diversity of actors, working at different scales.
 - Policy packages.
 - There is no magic bullet.

1 Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

2) What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

3 A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Creutzig et al. (2021)

· · · · ·	SDGs	2	8	7, 11	3	6	7	11	11	4	1	1, 2, 8, 10	5, 10, 16	5, 16	10, 16	11, 16	6	9,12
Sectors	Mitigation strategies/well-being dimensions	Foot	Water	Ar	Health	Sanitation	Energy	Shahar	Mability	Education	Communication	Social protection	Participation	Personal security	Social cohesion	Political stability	Economic stability	Material provision
1	Sufficiency	5446	inte .	-	-	44	14	-	2440	115	(48)	(ed)	(48)		940		-	- An
Building	Efficiency	(at	111	Extentil.	-	in i	14	10	-	6470	1011		0+0	1+1	July 1		1000	048-10
	Lower carbon and renewable energy	040510	10010	10			10	141	101	1413	1000		(+1)	101	(MEE)		(107-11	(+1)
Food	Food waste	1+1	-	64	201	611	0.0		100	- 775	H-0	6-10+12	0490			111	(61)	-
	Overconsumption	5415	Perel	0-9-11	1		1446.00						I.K.			141		
	Animal-free protein	Life:	10	100							60	-	(+1)		14	(etc.)		
neport	Teleworking and online education system	2+12	101174	100	-		148	1411	148	140	1411	1411	1-0	144-41	141	144	1448	
	Non-motorized transport	100	H19	640			-		10.	(41)	1.1	60	25	148	640	100	340	
	Shared mobility	445	-	Tel.	10.		(+1)		248		(141)	1-10	6.9	(6.11-1)	(4.5)-5	14	1+27	140
Ĕ	BEVs	040		148	01	64	100		140			-	144				Hell I	100
Urben	Compact city	(10-7)	645 ····	64-1	(ADD-1)	1+11	0.00	ent.	11A	415	(Heleft)	1-61	(14	1410	141-6		fell.	(+1)
	Circular and shared economy	140	HI .	14		-	1.1	(-2-1)	August 1	(+1)	101	69	64	148	10	140	360	10
	Systems annmark in urban rolliny and martine	9-11	44	100	10	0.0	100	10	4.90		jen.	1-11	0.0	1-8	100		0.1	-
	Nature-based scholone	(18)	1010-15	1.0.0	240	611	0.0	(and all	912	348)		146	100	0.9	14-4		100	940
Industry	Lising lass matarial by design	1		100	101	110	-	140	348	(41).	140	140	640)#1	(11)	145	and a	
	Product Ha adaptation	140	10	100		1+01	144	-	140	(41)	(+1)	1419	14	1+1	141	1+2	1100	14
	Energy efficiency	4407	H-11	64	an.	(+2)	149	1	-147)	## (417)	1+01	ten l	10		**	4+0	.007	10
	Checking and and a second second	140	444	100	** 9-11	140	0.0	10	1401	(41)	1400	0.01	(11)		60		1140	24
	Circlaar economy		-10.0	200	**		10.00	****		99		44	344	14			444	14

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

List of SDGs

)	SDG 10: Reduced Inequalities
	SDG 11: Sustainable Cities and Communities
	SDG 12: Responsible Consumption and Producti
	SDG 13: Climate Action
	SDG 14: Life Below Water
	SDG 15: Life on Land
	SDG 16: Peace, Justice and Strong Institutions
	SDG 17: Parmerships for the Goals

Confidence levels

- Low confidence
- •• Medium confidence
- ••• High confidence

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

1 Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

2) What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

3 A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

• Examples of *demand-side* solutions for urban emissions mitigation:

- **Urban planning** for denser cities: mitigation potential of 23-26% in 2050 (Creutzig et al., 2015, 2016).
- Modal shift towards walking, cycling, public transport.
- Telecommuting.
- **Shared mobility**: sharing an asset (bike, car) and use of technologies (apps,..) to put in touch supply and users.
- Shared appartments.
- More flexibility in the building sector: help the relocation of old people, avoid vacant land,...

1 Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

2) What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

3 A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

Data sources:

- From transnational municipal networks (GHG emissions, energy use,...)
- From satellite imagery (land-use data, population density, night-time lights,...)
- From collaborative approaches (transport data, amenities,...)
- From webscrapping, machine learning,...

Data sources:

- From transnational municipal networks (GHG emissions, energy use,...)
- From satellite imagery (land-use data, population density, night-time lights,...)
- From collaborative approaches (transport data, amenities,...)
- From webscrapping, machine learning,...

A few examples:

- http://openghgmap.net/
- https://viewer.esa-worldcover.org/worldcover/

Potential for large-scale urban growth modeling

Figure: Global forecasts of probabilities of urban expoansion through 2050, under the SSP5 scenario. Source: Huang et al. (2019)

Why focus on cities?

- Cities concentrate populations, wealth, activities, and emissions
- Cities as actors of the environmental transition
- Diversity of urban forms

2) What is the optimal urban form?

- Mitigation
- Adaptation
- Which urban form to reconcile these goals?

3 A few concluding thoughts

- Ambitious climate policies can come with high levels of well-being
- A large mitigation potential might come from demand solutions
- We have more and more tools to monitor urban issues
- Still, we lack data and studies on developping countries' cities

• Fast urbanization.

- Per capita emissions 7 times lower in developing country cities than in developed country cities.
- But growing rapidly: between 2000 and 2015, +22.6% in Africa, +71.7% in Asia / Pacific, +40.4% in Latin America,...
- Transportation: increasing urbanization rates.

Fast urbanization.

- Per capita emissions 7 times lower in developing country cities than in developed country cities.
- But growing rapidly: between 2000 and 2015, +22.6% in Africa, +71.7% in Asia / Pacific, +40.4% in Latin America,...
- Transportation: increasing urbanization rates.
- **Governance:** Cities that may not have the institutional, financial or technical resources to implement local emission reduction actions.

Fast urbanization.

- Per capita emissions 7 times lower in developing country cities than in developed country cities.
- But growing rapidly: between 2000 and 2015, +22.6% in Africa, +71.7% in Asia / Pacific, +40.4% in Latin America,...
- Transportation: increasing urbanization rates.
- **Governance:** Cities that may not have the institutional, financial or technical resources to implement local emission reduction actions.
- Potential **co-benefits** of actions against global warming (strengthening political institutions).

Fast urbanization.

- Per capita emissions 7 times lower in developing country cities than in developed country cities.
- But growing rapidly: between 2000 and 2015, +22.6% in Africa, +71.7% in Asia / Pacific, +40.4% in Latin America,...
- Transportation: increasing urbanization rates.
- **Governance:** Cities that may not have the institutional, financial or technical resources to implement local emission reduction actions.
- Potential **co-benefits** of actions against global warming (strengthening political institutions).
- 23.5% of the world's urban population lives in informal housing:
 - Populations more exposed to climatic risks.
 - Upgrading informal housing could be an opportunity to reduce emissions.

Knowledge gaps

- Literature on the emissions reduction potential of the informal sector too limited.
- There is little data on income, employment, inequality, etc. in the cities of developing countries, which does not allow for in-depth studies or modeling.

Knowledge gaps

(a) Observed employment density

(b) Predicted employment density

< □ > < //>
</

Employment density (log) - Normalised

and the second s					
-1 and below	-0.5	0	0.5	1	1.5 and above

Figure: Dakar. Barzin et al. (2021)